

USR-LG206-L-P 说明书

文件版本: V1.1.4

产品特点:

- 点对点通信协议(支持集中器通信协议(需更换固件))
- 支持定点发送模式
- 支持主从模式
- 支持数据加密传输
- AT指令配置,配套设置工具
- 3500 米传输距离
- -138.5dBm 接收灵敏度
- RS232/485 接口
- 5~36V 电源供电
- ESD 保护(等级 4)
- 电源防浪涌 (等级 3)
- 485 防浪涌 (等级 3)
- 硬件看门狗

目 录

USR-LG206-L-P 说明书	1
1. 快速入门	4
2. 产品概述	7
3. 应用方案及相关参数设置参考	10
3.1. LoRa 方案特点	10
3.2. Modbus 数据采集	10
3.3. 定点数据采集及设备控制	11
3.4. 速率选择参考	12
3.4.1. LoRa 数传终端单次传输 100 字节所需时间	12
3.4.2. LoRa 数传终端不同速率可传输距离曲线图	12
3.4.3. LoRa 数传终端不同速率下穿透实体墙层数参考曲线图	13
4. 产品功能	14
4.1. 工作模式选择	15
4.2. 工作模式详解	15
4.3. 广播发送与接收	24
4.4. 信噪比及信号强度指示	25
4.5. 固件升级	25
5. 常见问题及注意事项	28
5.1. 透传模式下无法进行数据通信	28
5.2. 定点模式下无法进行数据通信	28
5.3. 主从模式需注意问题	28
5.4. 采集数据错误或乱码问题	28
5.5. LoRa 频段设置与天线的关系	28
6. AT 指令设置方法	29
6.1. AT 指令格式	30
6.2. AT 指令配置工具	31
7. 联系方式	40
8. 免责声明	41
9. 更新历史	42

1. 快速入门

USR-LG206-L-P 是一款支持点对点通信协议(同时支持集中器通信协议的固件)的低频半双工LoRa 数传终端,可实现串口和 LoRa 互转通信,本章主要介绍产品的单向透传测试指导。

涉及到的相关软件如下:

LOTA设置软件: https://www.usr.cn/Download/693.html

USR-TCP232-Test: 有人网络调试助手 串口调试助手二合一,下载地址

http://www.usr.cn/Download/27.html

产品相关资料下载地址: http://www.usr.cn/Product/213.html

🔢 🗷 🚮 😰 🚨 🙈

产品中心

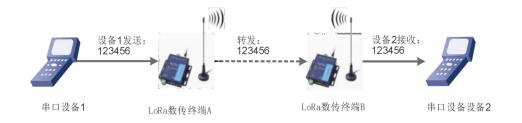
点对点LoRa数传终端 USR-LG206-L-P 产品名称: LoRa数传终端 发布时间: 2017-11-30 售后服务: 技术支持中心

图 1 资料下载页面

USR-LG206 所需配件:

图 2 产品配件

实现点对点通讯发送方和接收方需满足 3 个条件:


- 速率等级相同(SPD)
- 信道一致(CH)
- 目标地址相同(ADDR)或为广播地址(65535)

本例采用如下参数进行设置:

表 1参数

参数	LoRa 数传终端 A	LoRa 数传终端 B
速率等级-SPD	8	8
信道-CH	35	35
目标地址-ADDR	888	888

(1) 使用 RS232 串口线分别将 LoRa 数传终端 A、LoRa 数传终端B 接入串口设备(以 PC 机代替),给 LoRa 数传终端装上天线,然后给 LoRa 数传终端上电。

图 3 硬件连接及通信过程

(2) 打开 LoRa 设置软件(下图),依次点击打开串口(选择2个LG206 对应的串口号,串口参数: 115200,None, 8,1,NFC)、进入配置状态、读取参数、配置上表中的参数、一键设置所有参数,关闭 LoRa 设置软件;具体操作流程见下图:

USR-LG206-L-P 说明书

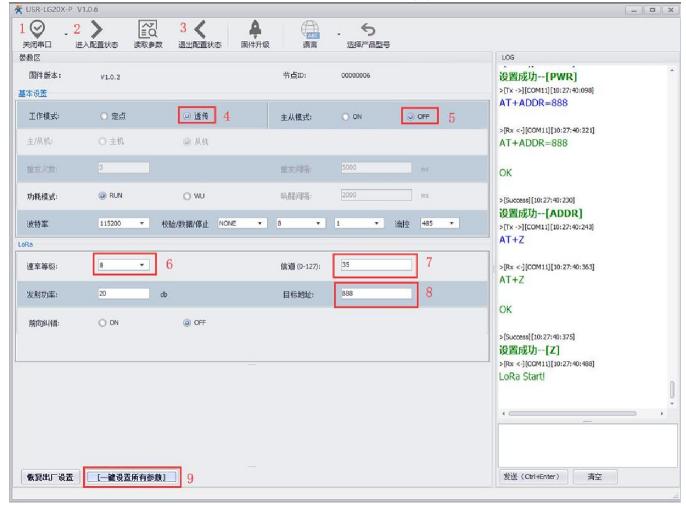


图 4 参数设置

注: 若提示参数设置失败,则重新点击"一键设置所有参数",再次进行设置;当设置成功后想要再次进行参数设置,需要重新进入配置状态。

(3) 启动两个 USR-TCP232-Test (模拟串口设备 1,2) 分别连接 LoRa 数传终端 A、B 的串口,使用串口设备 1 发送数据串口设备 2 可接收数据(反之亦然),通信效果如下图所示:

图 5 数据透传

2. 产品概述

USR-LG206-P 是一个支持点对点通信协议的低频半双工 LoRa 数传终端,工作的频段为: 398~525Mhz。使用 串口进行数据收发,降低了无线应用的门槛,可实现一对一或一对多通信。LoRa 具有功率密度集中,抗干扰能力强 的优势,本产品通讯距离可达 3500m(空旷视距,天线增益 3dBi,高度大于 2m, 0.268Kbps 空中速率)。

如果在使用过程中有问题,也可以将问题提交到我们的客户支持中心: http://im.usr.cn

2.1. 基本参数

分类 参数 取值 398~525MHz 工作频段 发射功率 10dBm~20dBm 接收灵敏度 -138.5dBm@0.268Kbps 无线参数 3500m 测试条件: 晴朗, 空旷, 20dBm 发射功率, 天线增 传输距离 益 3dBi, 高度大于 2m, 0.268Kbps 空中速率 SMA 天线座(外螺内孔) 天线选项 使用 470MHz 吸盘天线 UART: RS232/485 数据接口 波特率: 1200bps - 115200bps 5 ~ 36V 工作电压 发射电流 115mA @5V 工作电流 待机电流 23mA @5V 硬件参数 工作温度 -40°C $\sim +85$ °C -40°C ~ +125°C 存储温度 工作湿度 5~95%RH(无凝露) 存储湿度 1~95%RH(无凝露)

表 2 LoRa 数传终端技术参数

2.2. 接口说明

天线接口:

SMA 天线座(外螺内孔)

电源接口:

5.5*2.1 标准 DC 电源接口,输入电压 5-36V 产品电源输入具有 TVS 保护另外支持 5.08*2P 螺钉式接线端子接入电源

RS232 接口:

设备的串口为公口(针), RS232 电平 与设备232串口连接时需要用交叉线(RXD接TXD, TXD接RXD交叉, GND接GND) 其余悬空。

USR-LG206-L-P 说明书

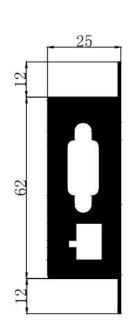
表 3 RS232 引脚定义		
Pin	网络	说明
2	RXD	数据接收,节点的串口收到数据闪烁
3	TXD	数据发送,节点通过串口向外发送数据时闪烁
5	GND	接地

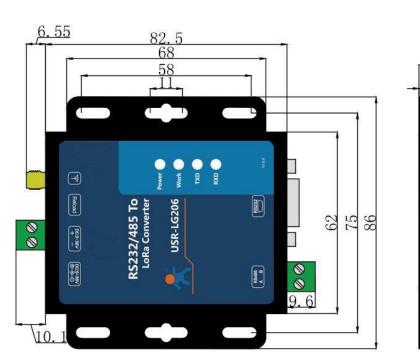
RS485 接口:

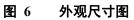
RS485 有引出两根线分别是 A(data+)和 B(data-),和 LoRa 数传终端 RS485 连接时 A(+)接 A(+), B(-)接 B(-)。

Reload 按键:

此按钮是恢复出厂设置的按钮,LoRa 数传终端正常工作状态下(Work 灯正常闪烁)按下 3 秒以上再放开,可以观察到 TXD 灯闪烁一下,即将 LoRa 数传终端的设置参数恢复到出厂配置状态。




25


2.3. 外观尺寸

2.4. 工作指示灯

LoRa 数传终端共有 4 个指示灯,从上到下依次为:

表 4 指示灯说明

指示灯	功能	说明
Power	电源指示	电源输入正确时常亮
Work	工作指示灯	正常工作时 1s 闪烁一次, 升级模式 0.5s 闪烁一次
TXD	数据发送	LoRa 数传终端通过串口向外发送数据时闪烁
RXD	数据接收	LoRa 数传终端的串口收到数据闪烁

3. 应用方案及相关参数设置参考

3.1. LoRa 方案特点

- (1) LoRa 数传终端是半双工的通讯方式(类似于有线的 485),同一时刻在同一通道内只支持一个设备进行发送操作,不支持多个从站设备同时向主站设备发送数据;
 - (2) LoRa 通信方式空中耗时较长,不适合应用于对实时性要求较高的场景。

3.2. Modbus 数据采集

- 适用场景: ①农业蔬菜大棚土壤信息采集; ②电表、水表等表类数据采集; ③空气质量状况信息采集
- 适用模式: 透传模式(模式详细介绍及设置流程见"4.2.工作模式详解")
- **搭配产品:** 可搭配串口服务器或者 4G DTU 使用(详见官网 http://www.usr.cn/Product/index.html),本 文以串口服务器为例
- 应用详情(以厂区电表数据采集为例):

串口服务器(如 W610)与 PC 端抄表软件建立 socket 连接,抄表软件下发的 modbus 查询指令通过串口服务器的串口输出给 LoRa 数传终端(主站),LoRa 数传终端(主站)将 modbus 查询指令通过 LoRa 无线传输给 LoRa 数传终端(从站),从站下的 modbus 设备根据查询指令选择上报数据,并通过 LoRa 数传终端(从站)→LoRa 数传终端(主站)→串口服务器→抄表软件,完成一次数据采集过程,具体见下图。

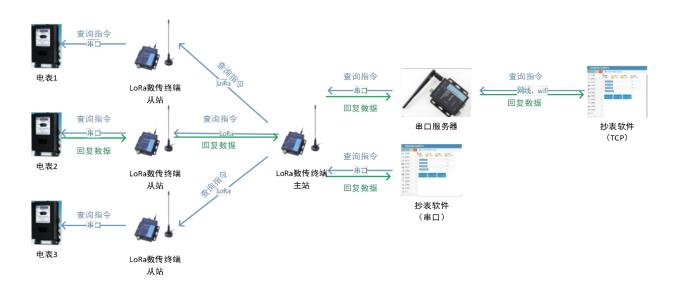


图 7 数据流图

● 速率设置

因厂区厂房林立,穿透较多,建议实际使用时直线穿透不要超过 5 层实体墙(以实际测试为准),对于 500m 左右的厂房,当穿透实体墙较少(2 层以内)可尝试选择速率 6-8;当穿透较多,可尝试使用速率 2-4 进行测试, 障碍物阻挡会造成通信距离缩短,速率与传输距离关系可参考 "3.4.3 LoRa 数传终端不同速率下穿透实体墙层数曲线图"。

- 注:①本应用采用透传模式,非主从模式;若抄表软件的接口为串口,可直接连接 LoRa 数传终端主站。
 - ②W610 与抄表软件的连接方式为 socket 连接, 抄表软件可选做服务器与客户端。
- ③该数据采集方案也适用于 DL645 等类似于 modbus 协议采集方式,但要求抄表软件(服务器)对不同的从站设备有不同的查询指令(即从站设备需带有自己的地址编号,如 modbus 设备的设备号)。
 - ④为避免信号互相干扰,同一时刻只能采集一个从站设备数据,不支持多个从站设备同时上报数据。
 - ⑤本 LoRa 数传终端的 485 总线最多支持驱动 32 个 modbus 设备。
 - ⑥LoRa 速率等级对传输耗时影响较大,在设置 modbus 接收超时时间时要注意。

3.3. 定点数据采集及设备控制

- **适用场景:** 私有协议下的数据采集及设备控制,如蔬菜大棚中,各传感器使用的采集指令相同(用户设备本身不带有设备编号),且需要对不同设备进行不同的控制操作(如阀门)。
- **适用模式:** 定点模式或主从模式(模式详细介绍及设置流程见"4.2.工作模式详解")
- **搭配产品:** 可搭配串口服务器或者 4G DTU 使用(详见官网 http://www.usr.cn/Product/index.html),本文以串口服务器为例
- 应用详情(以蔬菜大棚土壤温湿度采集及灌溉阀门控制为例):

串口服务器(如 W610)与 PC 端服务器建立 socket 连接,服务器下发的查询指令通过串口服务器的串口输出给 LoRa 数传终端(主站),LoRa 数传终端(主站)转发查询指令给指定的 LoRa 数传终端(从站),从站下的传感器设备根据查询指令选择上报数据,并通过 LoRa 数传终端(从站)→LoRa 数传终端(主站)→串口服务器→服务器,完成一次数据采集过程;同样的,服务器下发的控制指令通过:服务器→串口服务器→LoRa 数传终端(主站)→LoRa 数传终端(从站)→阀门控制设备,具体见下图。

图 8 数据流图

● 速率设置

因蔬菜大棚或者田野几乎无遮挡,则主要考虑距离及实时性问题,在 500m 左右范围内,可选择速率 8-9; 在 1km 以内的范围内,可选择速率 5-7 进行测试,若存在建筑遮挡,需降低速率,速率与传输距离关系可参考 "3.4.2 LoRa 数传终端不同速率可传输距离曲线图"。

- 注: ①本应用采用定点或主从模式; 若服务器的接口为串口, 可直接连接 LoRa 数传终端主站
 - ②主站设备向从站设备发送数据需遵循一定格式。
 - ③为避免信号互相干扰,同一时刻只能采集一个主站设备数据,不支持多个从站设备同时上报数据。
 - ④本 LoRa 数传终端的 485 总线最多支持驱动 32 个 modbus 设备。

3.4. 速率选择参考

根据实际测试情况发现,使用 LoRa 速率越低,则传输距离越远,抗干扰能力越强,发送数据耗时越长。

3.4.1. LoRa 数传终端单次传输 100 字节所需时间

下图为不同速率下 LoRa 数传终端单次传输 100 字节空中耗时(此值为计算值,与实际使用存在一定误差,以实际测试结果为准)。由图中可以看出,随着速率等级的上升,LoRa 数传终端传输 100 字节耗时缩短。

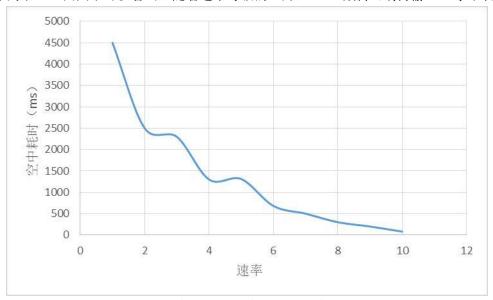


图 9 不同速率单次传输 100 字节空中耗时曲线图

3.4.2. LoRa 数传终端不同速率可传输距离曲线图

由下图可以看出,速率越高,数据传输所能达到的极限距离越近;速率越低,数传传输所能达到的极限距 离越远。

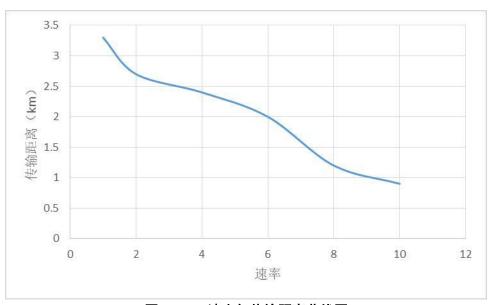


图 10 速率与传输距离曲线图

注: 无线传输受温度、湿度、障碍物遮挡、电磁干扰等不同环境影响,传输距离会有一定程度下降,以实

测为准,且为保证稳定传输,建议留出通信距离余量。

3.4.3. LoRa 数传终端不同速率下穿透实体墙层数参考曲线图

由下图可以看出,随着速率的升高, LoRa 数传终端的穿透层数会有一定程度的下降。

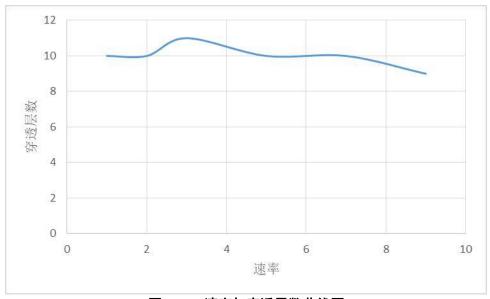


图 11 速率与穿透层数曲线图

注: 本测试为垂直穿透,且不考虑距离因素,因具体环境不同可能会有差异,仅做参考。

4. 产品功能

基本功能框图:

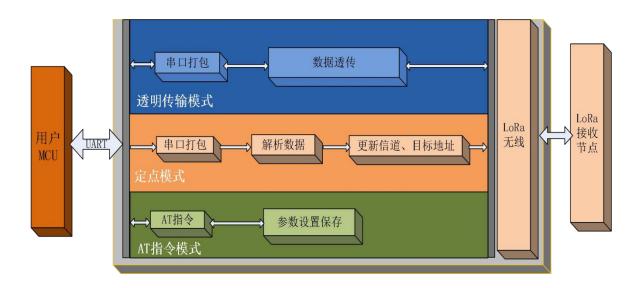


图 12 功能框图

主从模式框图:

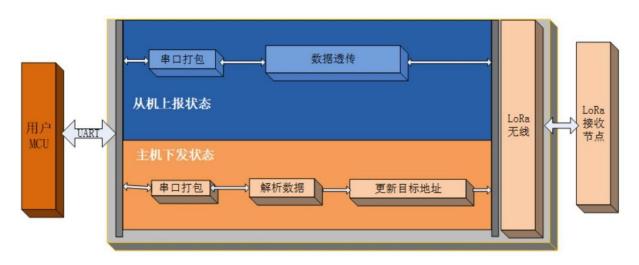


图 13 功能框图

4.1. 工作模式选择

工作模式 模式简介 使用场景 用于查询、设置 LoRa 数传终端的参 用户现场实现对终端参数的查询或 AT 指令模式 可实现一对一或一对多的数据透明 主要用于设备的点对点通信、灯光 透传模式 传输,起到了串口无线延长的作用 控制、数据采集等领域 定点模式可实现对指定 LoRa 数传 主要用于特定设备之间的互相通信, 定点模式 终端进行数据通信(该模式下发送 如对指定的设备进行控制指令 数据需要按照协议格式进行) 下发或数据采集 在主从模式下, 主机 M 可指定组内 任一从机发送数据(需遵循一定数 据格式),从机只和主机进行通信 主要用于传感器的数据采集及控制指 主从模式 (从机向主机传输数据直接透传, 令下发,如农/牧/渔业以及环境监测 无需特定协议格式),带有数据重传 等领域的数据采集 机制,有效降低丢包率 最多可连接从机数: 65535 个

表 5 工作模式选择说明

注: 1.选用透传模式还是主从模式的区别在于: 当所需采集或进行控制的设备自带 CPU 及设备地址,能够自主解析指令内容(如支持 modbus 协议或者 DL645 协议的设备),则选用透传模式;当每个需采集或进行控制的设备都完全相同,需要 LoRa 数传终端进行地址区分,则选用主从模式。

- 2.无论哪种工作模式,单包数据长度都不能超过 240 字节,否则丢弃。
- 3.本产品为半双工 LoRa 数传终端,不能同时进行数据收发。

4.2. 工作模式详解

4.2.1. AT 指令模式

AT 指令模式即命令模式,主要实现用户通过串口发送命令查询、设置 LoRa 数传终端相关的参数,详细的 AT 指令介绍请参考 "6. AT 指令设置方法"。

4.2.2. 透传模式

透传模式下数据的传输过程不影响数据的内容,所发即所收。透明传输模式的优势在于可实现两个 LoRa 数传终端即插即用,无需任何数据传输协议。

(1) 通信过程

图 14 透传模式通信过程

注: 为保障数据安全, 在数据传输环节启用了数据加密。

(2) 参数设置

通讯双方需使以下三个参数值保持一致:

- 速率等级相同(SPD)
- 信道一致(CH)
- 目标地址(ADDR)相同或为广播地址(65535)

注: 1) LoRa 数传终端可收到同速率、信道、目标地址下的所有 LoRa 数传终端发出的数据,故在处理应用层逻辑时,请注意做好协议的容错处理。

2)若将LoRa 数传终端的目标地址设为广播地址,则其他同速率同信道的LoRa 数传终端均可接收到此LoRa 数传终端发送的数据。

		42 0
	项目	说明
1	SPD	设置/查询速率等级
2	СН	设置/查询信道
3	ADDR	设置/查询目标地址

表 6 透明传输指令列表

参数配置过程:

打开设置软件→选择串口号并打开串口→"进入配置状态"→"读取参数"→进行参数修改→"一键设置所有参数", 详细配置过程见下图:

USR-LG206-L-P 说明书

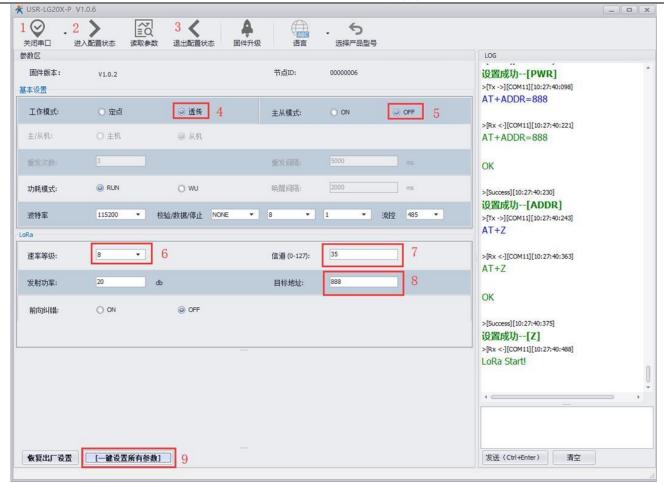


图 15 参数配置

注:若提示设置失败,则重新点击"一键设置所有参数",再次进行设置;当设置成功后想要再次进行参数设置,需要重新进入配置状态。

(3) 功能调试

启动两个 USR-TCP232-Test (模拟串口设备 1,2) 分别连接 LoRa 数传终端 A、B的串口,使用串口设备 1 发送数据串口设备 2 可接收数据(反之亦然),调试结果如下图所示:

图 16 数据透传

4.2.3. 定点模式

定点模式可以在发送数据时灵活的改变目标地址和信道。在透明传输的基础上将发送数据的前 2 字节作为目标地址(高位在前)第 3 字节作为信道,发射时 LoRa 数传终端改变目标地址和信道,发送后恢复原有状态。

(1) 通信过程

如下图所示,当一台 LoRa 数传终端 A(目标地址(ADDR): 88,信道(CH): 72)想向另一台 LoRa 数传终端 B(目标地址(ADDR): 888,信道(CH): 70)发送数据 DATA(123456),则只需要按照 16 进制发送(03 78 46 31 32 33 34 35 36),则 LoRa 数传终端 B 接收到数据(31 32 33 34 35 36)。

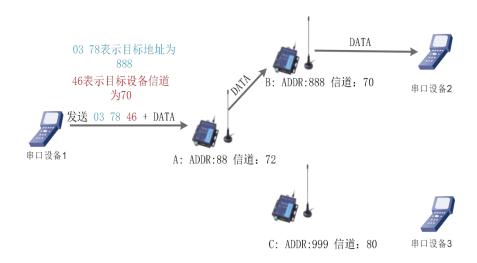


图 17 定点模式数据格式

(2) 参数设置

通讯双方需使以下参数值保持一致:

● 速率等级相同(SPD)

表 7 定点传输指令列表

	项目	说明
1	WMODE	设置/查询工作模式
2	SPD	设置/查询速率等级

参数配置过程:

打开设置软件→选择串口号并打开串口→"进入配置状态"→"读取参数"→进行参数修改→"一键设置所有参数",详细配置过程见下图:

USR-LG206-L-P 说明书

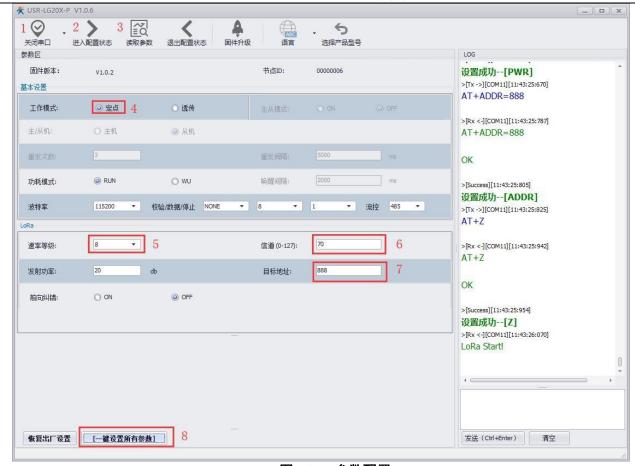


图 18 参数配置

注:若提示设置失败,则重新点击"一键设置所有参数",再次进行参数设置;当设置成功后想要再次进 行参数设置,需要重新进入配置状态。

(3) 功能调试

启动两个 USR-TCP232-Test (模拟串口设备 1,2) 分别连接 LoRa 数传终端 A、B,使用串口设备 1 发送数据,串口设备 2 可接收数据(反之同理),具体数据格式参考 "图 17: 定点模式的数据格式",通信效果如下图所示:

图 19 定点模式通信效果展示

4.2.4. 主从模式

主从模式下分主机和从机,主机需按照协议格式给组中 LoRa 数传终端发送数据,从机只向主机上报数据(无需遵循数据传输协议),为减小丢包率,主从模式下还设有数据重发机制,重发次数可设。

注: 版本低于 V1.0.2 的固件不支持此模式,若需要用此模式请联系技术支持升级固件。

(1) 通信过程

当一台主机 M(目标地址 (ADDR): 默认)向一台从机 S1(目标地址 (ADDR): 88)发送数据 DATA(123456),则只需要按照 16 进制发送 (00 58 31 32 33 34 35 36),则从机 S1 接收到数据 (31 32 33 34 35 36);从机 S2 向主机 M 直接发送 DATA(31 32 33 34 35 36),主机 M 收到数据 DATA(31 32 33 34 35 36)。通信过程如下图所示:

图 20 主从模式下通信流程

注:本产品为半双工 LoRa 数传终端,不能同时进行数据收发。

(2) 参数设置

通讯双方需满足 3 个条件:

- 速率等级相同(SPD)
- 信道一致(CH)
- 各个从机目标地址(ADDR)必须设置为不同, 主机为默认值即可

注:不同主机的速率、信道搭配方式必须保证不同

参数配置过程:

打开设置软件→选择串口号并打开串口→"进入配置状态"→"读取参数"→进行参数修改→"一键设置所有参数", 详细配置过程见下图:

USR-LG206-L-P 说明书

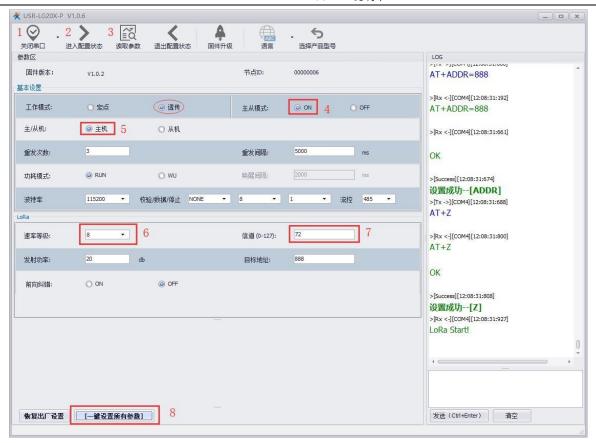


图 21 主机参数配置

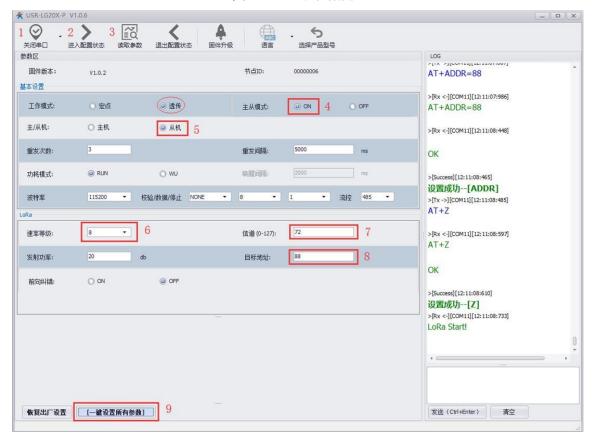


图 22 从机参数配置

上图中:

- 1) 选中透传后才能进行主、从模式选择;
- 2) "重发次数"表示发送方在没收到接收方的确认回复 ack 后最大重复发送数据包的次数,默认为 3, 主从模式下重发次数不可为 0, 设为 0则表示关闭主从模式,回到普通透传模式;
- 3) "重发间隔"表示发送方在发送数据包后等待接收方回复 ack 的时间,若等待"重发间隔"时间后接收方还没有回复 ack,发送方则进行一轮重发,默认为 500ms;
- 4) 如上表例子所示速率等级选择 8, 速率等级可设范围(1~10), 数值越大传输数据越快, 耗时越短, 但传输距离越近, 请根据实际需求情况设定。

(3) 功能调试

启动两个 USR-TCP232-Test (模拟串口设备 1,2) 分别连接 LoRa 数传终端 M、S1, 使用 LoRa 数传终端 M 发送数据, LoRa 数传终端 S1 可接收数据,具体数据格式参考 "图 20: 主从模式下通信流程",通信效果如下图所示:

图 23 主从模式通信效果展示(主机→从机)

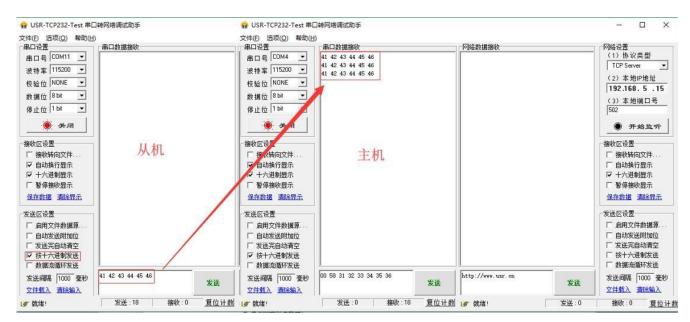


图 24 主从模式通信效果展示(从机→主机)

4.3. 功耗模式

LoRa 数传终端支持 2 种功耗模式:

表 8 功耗模式

模式	简介	备注
RUN	运行模式,上电后 LoRa 数传终端进入持续接收状态,当有数据 发出时切换为发射状态,发送完毕后恢复接收状态。	
WU	唤醒模式,发送数据前自动加入一定时长的唤醒码(如下图), 因此唤醒模式发送效率低于运行模式进而导致平均发送功耗高于 RUN 模式。其他同 RUN 模式	该模式可以唤醒处于低 功耗下的LoRa设备(如 L101)

模式可通过 AT 指令设置, 例: AT+PMODE=RUN

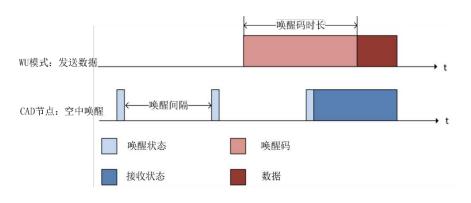


图 25 WU 模式唤醒 CAD 节点工作流程

功耗模式设置:

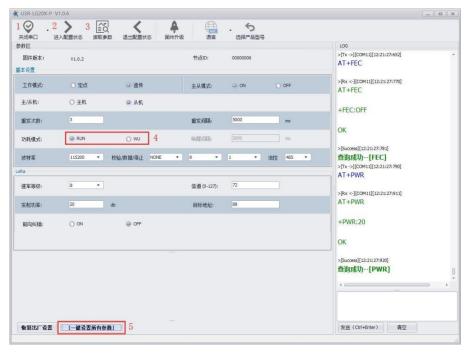


图 26 设置功耗模式

4.4. 广播发送与接收

当 LoRa 数传终端的目标地址为 65535 时,此 LoRa 数传终端可以和其它同速率、同信道的 LoRa 数传终端进行广播发送和广播接收。如图示将 LoRa 数传终端 A 的目标地址设置为 65535,此时 LoRa 数传终端 A 发出的数据其他 3 个 LoRa 数传终端均可接收,同时其他三个 LoRa 数传终端发出的数据LoRa 数传终端A 也能接收。

注: 主从模式暂不支持广播,广播地址按照普通地址处理。

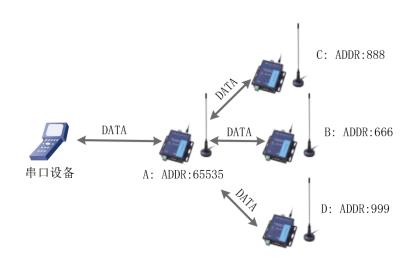


图 27 广播发送和广播接收

4.5. 数据安全

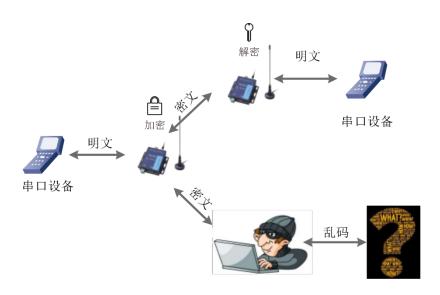


图 28 数据加密

在数据传输环节对数据进行加密,使数据传输更加安全。加密字可通过 AT+KEY 进行设置。

4.6. 信噪比及信号强度指示

本功能可以查看通信双方的信噪比及信号强度,可为评估 LoRa 数传终端的通信质量提供参考。使用方法:

- 1) 首先设置 LoRa 数传终端 A、LoRa 数传终端 B的速率、信道和目标地址保证双方可以通信
- 2) LoRa 数传终端 A 进入命令模式发送 AT+SQT 进入监听状态
- 3) LoRa 数传终端 B 可通过串口发送数据,也可以使用命令自动发送数据,例如每隔 500ms 发送一包数据 AT+SOT=500

LoRa 数传终端 A 接收到数据时通过串口输出信噪比及信号强度的信息

```
SNR: 12 RSSI: -87.204800

SNR: 13 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 11 RSSI: -87.204800

SNR: 11 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 12 RSSI: -87.204800
```

图 29 信号强度

SNR: 信噪比(越大越稳定), RSSI: 接收信号的强度指示(越大越稳定)注: 建议在 RSSI 的值介于-120~0 的范围内使用,实际应用应以丢包率为准!

4.7. 固件升级

(1) 升级工具获取

本产品使用设置软件通过RS232 串口进行升级操作,设置软件可从官网下载 http://www.usr.cn/Product/213.html

产品中心

Þ	4G工业路由器
b	串口转WIFI模块
۰	串口转以太网模块
۰	串口服务器
F	GPRS/4G DTU
۰	共享支付
Þ	烟感报警器
٠	低功耗蓝牙模块
٧	LoRa
	LoRa DTU
	LoRa集中器
	LoRa模块
Þ	NB-IoT
۰	4G工业计算机/工控机
۲	GPRS/4G模块
F	工业网关
Þ	CAN转以太网服务器
Þ	网络IO控制器
b	PLC云网关
•	移动定位

点对点LoRa数传终端 USR-LG206-L-P

产品名称: LoRa数传终端 发布时间: 2017-11-30 售后服务: 技术支持中心

图 30 设置软件下载页

(2) 固件升级步骤

点击"固件升级"→选择"端口号"、"产品型号"、"固件路径"→用尖锐物体按住"Reload"按键给模块上电(待绿色 work 灯快速闪烁即可松开)→点击"开始升级"等待升级完成

图 31 Reload 按键指示图

USR-LG206-L-P 说明书

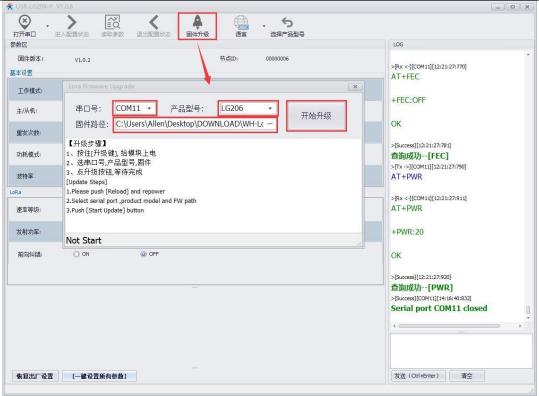


图 32 固件升级设置

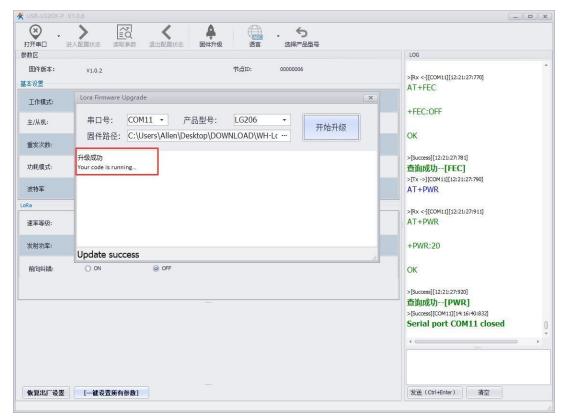


图 33 固件升级成功界面

(3) 升级异常解决方法

- 1) 当升级软件提示升级超时,请重新按住"Reload"按键给模块上电,再次进行升级。
- 2) 当升级软件提示缺少某些文件,请手动安装 MSVBCRT_AIO_2018.07.30_X86+X64 , 再次进行升级。

5. 常见问题及注意事项

5.1. 透传模式下无法进行数据通信

- 1) 检查固件版本号是否正确,若固件版本有误请升级固件,升级固件具体方法详见"4.7. 固件升级"。
- 2) 检查进行通信的双方的信道(CH)、速率等级(SPD)和目标地址(ADDR)等参数是否一致,若不一致则需将通信双方的该参数修改为相同值。
- 3) 检查天线是否装好,因 LoRa 数传终端外壳为铁制,不装天线对信号传输影响较大。
- 4) 检查所有串口助手工具波特率设置是否正确,本产品出厂默认波特率为 115200bps。

5.2. 定点模式下无法进行数据通信

- 1) 检查固件版本号、天线安装以及波特率设置是否正确。
- 2) 检查通信双方速率等级(SPD)设置是否一致,若不一致则需设置为相同值。
- 3) 检查发送的数据格式是否正确,具体的数据格式详见"4.2.3. 定点模式"章节。

5.3. 主从模式需注意问题

- 1) 保证同一组内的 LoRa 数传终端速率等级(SPD)相同,信道(CH)相同,所有从机的目标地址(ADDR)不同。
- 2) 主机向从机发送数据需要遵循一定协议,详见"图 20 主从模式下通信流程图"。
- 3) 当设置参数返回"ERR-2"时检测版本号是否正确,老版本固件(低于 V1.0.2)没有主从模式,需升级 固件。

5.4. 采集数据错误或乱码问题

- 1) 检查串口线是否是完好的;
- 2) 检查 LoRa 数传终端的波特率、校验位等参数是否和与其相连的设备参数一致,否则会导致数据错误。

5.5. LoRa 频段设置与天线的关系

本产品默认发货为吸盘天线(频段: 470~510MHz),若设置频段(398+ch(MHz))超出该范围,则天线增益性能会稍差一点,故请根据所用天线设置频段范围。此外,在使用时请检查天线接口处是否拧紧,并持天线竖直放置,尽量远离大型金属设备。

6. AT 指令设置方法

AT+指令是指,在命令模式下用户通过 UART 与 LoRa 数传终端进行命令传递的指令集,后面将详细讲解 AT+指令的使用格式。

上电启动成功后,可以通过 UART 对 LoRa 数传终端进行设置。

LoRa 数传终端的缺省 UART 口参数为: 波特率 115200、无校验、8 位数据位、1 位停止位。

<说明>

AT命令调试工具,UART接口推荐使用 SecureCRT 软件工具或者有人专业 APP 应用程序。以下介绍均使用 UART 通信及 SecureCRT 工具演示。

从透传模式切换到命令模式需要以下两个步骤:

- ▶ 在 UART 上输入"+++", LoRa 数传终端在收到"+++"后会返回一个确认码"a";
- ▶ 在 UART 上输入确认码 "a", LoRa 数传终端收到确认码后, 返回"+OK"确认, 进入命令模式;

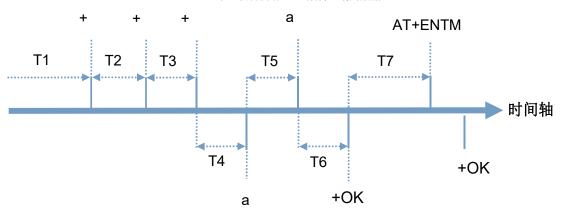


图 34 SecureCRT 操作界面

<说明>在输入"+++"和确认码"a"时,没有回显,如上图所示。

LoRa 数传终端进入指令模式需要按照如下图的时序要求:

在上图中,横轴为时间轴,时间轴上方的数据是串口设备发给 LoRa 数传终端的,时间轴下方的数据为 LoRa 数传终端发给串口的。

串口设备发给LoRa 数传终端的数据

图 35 切换指令模式时序

时间要求:

 $T2 \leq 300 ms$

T3 < 300 ms

T5 < 3s

在命令模式下串口设备给 LoRa 数传终端发送指令"AT+ENTM"恢复原来的模式。

表 9 AT 命令错误代码

返回代码	返回说明	备注
OK	响应成功	
ERR-1	无效的命令格式	
ERR-2	无效的命令	
ERR-3	无效的操作符	
ERR-4	无效的参数	
ERR-5	操作不允许	

6.1. AT 指令格式

发送命令格式:以回车<CR>、换行<LF>或者回车换行<CR><LF>结尾

表 10 AT 指令格式

类型	指令串格式	说明	举例
0	AT+CMD? <cr><lf></lf></cr>	查询参数	AT+VER? <cr><lf></lf></cr>
1	AT+CMD <cr><lf></lf></cr>	查询参数	AT+VER <cr><lf></lf></cr>
2	AT+CMD=para <cr><lf></lf></cr>	设置参数	AT+CH=66 <cr><lf></lf></cr>

LoRa 数传终端回复格式(关闭回显):

设置参数: <CR><LF>OK<CR><LF>

查询参数: <CR><LF> +CMD:PARA<CR><LF><CR><LF>OK<CR><LF>

CMD: 命令字 PARA: 参数

6.2. AT 指令集

表 11 AT 指令列表

	22 PR N 7 7 7 7		
序号	指令	说明	
		基本命令	
1	ENTM	退出 AT 命令	
2	Е	LoRa 数传终端 AT 命令回显设置	
3	Z	重启 LoRa 数传终端	
4	CFGTF	保存当前设置为出厂设置	
5	RELD	恢复出厂设置	
6	NID	查询节点 ID	
7	VER	LoRa 数传终端固件版本	
8	WMODE	设置/查询 LoRa 数传终端工作模式	
9	UART	设置/查询串口参数	

USR-LG206-L-P 说明书

10	PMODE	设置/查询功耗模式
11	WTM	设置/查询唤醒间隔
		LoRa
12	SPD	设置/查询速率等级
13	ADDR	设置/查询目标地址
14	CH	设置/查询信道
15	FEC	设置/查询前向纠错是否开启
16	PWR	设置/查询发射功率
17	SQT	信号强度显示
18	KEY	设置数据加密字
19	RSNUM	设置重发次数
20	SLOT	设置数据重发间隔时间
21	TMODE	设置主、从模式

6.3. AT 指令配置工具

产品配有专用设置软件,支持参数批量导入和导出,可大大简化用户的操作,推荐使用此软件配置参数:

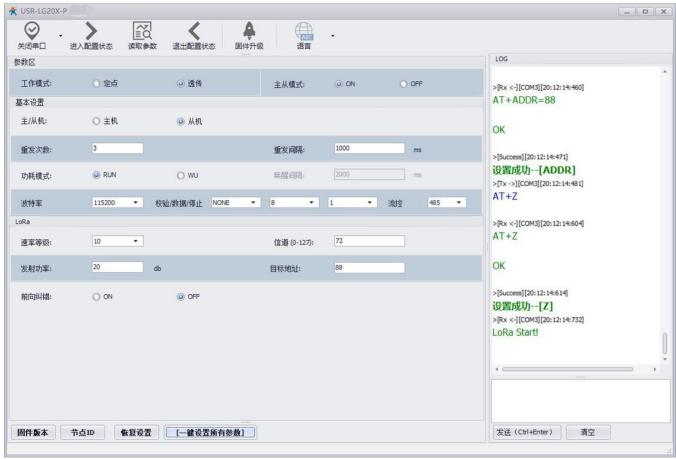


图 36 设置软件

6.3.1. AT 指令详解

6.3.1.1. AT+ENTM

- ▶ 功能:退出命令模式,恢复原工作模式;
- ▶ 格式:
 - ◆ 设置

AT+ENTM<CR><LF>
<CR><LF><CR><LF>>OK<CR><LF>

▶ 参数: 无

6.3.1.2. AT+E

- ▶ 功能: 设置/查询 LoRa 数传终端 AT 命令回显设置
- ▶ 格式:
 - ◆ 查询

AT+E <CR><LF>
<CR><LF>OK=<ON/OFF><CR><LF>

◆ 设置

AT+E=<sta><CR><LF>
<CR><LF>>CR><LF>>OK<CR><LF>>

- ▶ 参数: sta
 - ◆ ON: 打开回显(默认),回显 AT 命令下输入的命令
 - ◆ OFF: AT 命令模式下,输入命令不回显。
- ▶ 注:本设置掉电不保存

6.3.1.3. AT+Z

- ▶ 功能: 重启 LoRa 数传终端
- ▶ 格式:
 - ◆ 设置

AT+Z<CR><LF>
<CR><LF>OK<CR><LF>

▶ 参数:无

该命令正确执行后, LoRa 数传终端重新启动。

6.3.1.4. AT+CFGTF

- ▶ 功能:复制当前配置参数为用户默认出厂配置;
- ▶ 格式:
 - ◆ 设置

AT+CFGTF<CR><LF>

<CR><LF>+CFGTF:SAVED<CR><LF><CR><LF>OK<CR><LF>

- 参数:
 - ◆ SAVED: 保存成功

6.3.1.5. AT+RELD

- ▶ 功能:恢复 LoRa 数传终端配置参数为用户出厂配置参数
- ▶ 格式:
 - ◆ 设置

AT+RELD<CR><LF>
<CR><LF>REBOOTING<CR><LF>

◆ 参数:无

该命令将 LoRa 数传终端配置参数恢复到用户出厂设置,然后自动重启。

6.3.1.6. AT+NID

- ▶ 功能: 查询 LoRa 数传终端节点 ID
- ▶ 格式:
 - ◆ 查询

AT+NID<CR><LF>
<CR><LF>+NID:<nid><CR><LF>CR><LF>OK<CR><LF>

◆ 参数: nid:4 字节 HEX 字符串

6.3.1.7. AT+VER

- ▶ 功能: 查询 LoRa 数传终端固件版本
- ▶ 格式:
 - ◆ 查询

AT+VER<CR><LF>
<CR><LF>+VER:</cr><CR><LF>>CR><LF>OK<CR><LF>

◆ 参数: ver:固件版本

6.3.1.8. AT+WMODE

- ▶ 功能:设置查询工作模式
- ▶ 格式:
 - ◆ 查询

AT+WMODE<CR><LF>
<CR><LF>+WMODE:<status><CR><LF>>CR><LF>OK<CR><LF>

◆ 设置

AT+WMODE =<status><CR><LF>

<CR><LF><CR><LF>OK<CR><LF>

参数:

status:

TRANS: 透传模式 (默认状态)

FP: 定点模式

➤ 例: AT+WMODE=TRANS

6.3.1.9. AT+UART

- ▶ 功能:查询/设置串口参数
- ▶ 格式:
 - ◆ 查询

AT+UART<CR><LF>

<CR><LF>+UART:
baudrate,data bits,stop bit,parity,flowctrl><CR><LF>CR><LF>OK<CR><LF

>

◆ 设置:

AT+UART=<baudrate,data_bits,stop_bit,parity,flowctrl><CR><LF><CR><LF>OK<CR><LF>

▶ 参数:

- ◆ baudrate:波特率 1200,2400,4800,9600,19200,38400,57600,115200 (默认 115200)
- ◆ data_bit:数据位 8
- ◆ stop_bit:停止位 1,2 (默认 1)
- ◆ parity:校验位 NONE,EVEN,ODD (默认 NONE)
- ◆ flowctrl: 流控 NFC/485 (默认 485, 如不使用 RS485 接口请改为 NFC 以提高数据传输速率)
- ▶ 例: AT+UART=115200,8,1,NONE,NFC

6.3.1.10. AT+RSNUM

- ▶ 功能:设置查询重发次数,重发次数指 LoRa 数传终端发送数据后没有收到反馈后重新发送数据包的次数。 (只在主从模式下有效)
- ▶ 格式:
 - ◆ 查询

AT+RSNUM<CR><LF>
<CR><LF>+WTM:<num><CR><LF><CR><LF>OK<CR><LF>

◆ 设置

AT+WTM=<num><CR><LF>
<CR><LF><CR><LF>>OK<CR><LF>

- 参数:
 - ◆ num: 0~10 (默认 0)

注意:设置重发次数为 0表示不进行数据重发,且关闭主从模式,返回普通透传模式。

➤ 例: AT+RSNUM=3

6.3.1.11. AT+SLOT

▶ 功能:设置查询重发间隔,重发间隔指发送两包数据之间的时间。 重发间隔在可允许范围内设置大一点为宜,以使接收端能有充分的时间应答。

- ▶ 格式:
 - ◆ 查询

AT+SLOT<CR><LF>
<CR><LF>+WTM:<slot time><CR><LF>>CR><LF>OK<CR><LF>

◆ 设置

AT+SLOT=<slot_time><CR><LF>
<CR><LF>>CR><LF>>CR><LF>>OK<CR><LF>

- ▶ 参数:
 - ◆ Slot time: 500~30000 ms (默认 5000ms)
- ▶ 例: AT+SLOT=3000

6.3.1.12. AT+TMODE

- ▶ 功能:设置查询主、从机模式。
- ▶ 格式:
 - ◆ 查询

AT+TMODE<CR><LF>
<CR><LF>+WTM:<slot time><CR><LF>>CR><LF>OK<CR><LF>

◆ 设置

AT+TMODE=<tmode><CR><LF><CR><LF><CR><LF>>OK<CR><LF>

- 参数.
 - ◆ tmode: 0(从机) 1(主机)(默认 0)
- ▶ 例: AT+ TMODE =1 (设置为主机模式)

6.3.1.13. AT+PMODE

- ▶ 功能:查询设置休眠模式
- ▶ 格式:
 - ◆ 查询

AT+ PMODE<CR><LF>

<CR><LF>+PMODE:<MODE ><CR><LF>OK<CR><LF>

◆ 设置

AT+ PMODE=<MODE ><CR><LF>
<CR><LF>>CR><LF>>CR><LF>

- 参数:
 - ◆ MODE:

RUN 运行模式(默认)

WU 唤醒模式

➤ 例: AT+PMODE=RUN

6.3.1.14. AT+WTM

- ▶ 功能:设置查询唤醒间隔
- ▶ 格式:
 - ◆ 查询

AT+WTM<CR><LF>

<CR><LF>+WTM:<time><CR><LF>OK<CR><LF>

◆ 设置

AT+WTM=<time><CR><LF>

<CR><LF><CR><LF>OK<CR><LF>

- ▶ 参数:
 - ◆ time: 500~10000ms (默认 2000)

注意:

此参数对 RUN 模式无效

模式 WU 下: 发送数据前加入对应时长的唤醒码, 值越大, 平均发送功耗越高

➤ 例: AT+WTM=1000

6.3.1.15. AT+SPD

- ▶ 功能:设置查询 LoRa 空中速率等级
- ▶ 格式:
 - ◆ 查询

AT+SPD<CR><LF>

<CR><LF> +SPD:<class><CR><LF><CR><LF>OK<CR><LF>

◆ 设置

AT+SPD=<class><CR><LF>
<CR><LF><CR><LF>>OK<CR><LF>

▶ 参数:

◆ class: 1~10 (默认 8)

速率对应关系(速率为理论峰值,实际速度要较小一些):

- 1: 268bps
- 2: 488bps
- 3: 537bps
- 4: 878bps
- 5: 977bps
- 6: 1758bps
- 7: 3125bps
- 8: 6250bps
- 9: 10937bps
- 10: 21875bps
- ▶ 例: AT+SPD=9

6.3.1.16. AT+ADDR

- ▶ 功能:设置查询目标地址
- ▶ 格式:
 - ◆ 查询

AT+ADDR<CR><LF>

<CR><LF>+ADDR:<addr><CR><LF><CR><LF>OK<CR><LF>

◆ 设置

AT+ADDR=<addr><CR><LF>
<CR><LF><CR><LF>>OK<CR><LF>

▶ 参数:

◆ addr: 0~65535 (默认 888)

注意: 65535 为广播地址,同信道同速率的 LoRa 数传终端都能接收

➤ 例: AT+ADDR=88

6.3.1.17. AT+CH

- ▶ 功能:设置查询信道
- 格式:
 - ◆ 查询

AT+CH<CR><LF>

<CR><LF>+CH:<ch><CR><LF>>CR><LF>OK<CR><LF>

◆ 设置

AT+CH=<ch><CR><LF><CR><LF>>CR><LF>>CR><LF>>CR><LF>OK<CR><LF>

◆ 参数:

ch: 0~127 (默认为 72)

▶ 例: AT+CH=72

注: 工作频段: (398+ch)MHz

6.3.1.18. AT+FEC

- ▶ 功能:设置查询是否使能前向纠错
- ▶ 格式:
 - ◆ 查询

AT+FEC<CR><LF>
<CR><LF>+FEC:<sta><CR><LF>OK<CR><LF>

◆ 设置

AT+FEC=<sta><CR><LF>
<CR><LF><CR><LF>>OK<CR><LF>

- 参数:
 - ♦ sta:

ON 开启,开启后数据传输更加稳定但降低通信速率 OFF 关闭(默认)

➤ 例: AT+FEC=ON

6.3.1.19. AT+PWR

- ▶ 功能:设置查询发射功率
- ▶ 格式:
 - ◆ 查询

AT+PWR<CR><LF>
<CR><LF>+PWR:<sta><CR><LF>OK<CR><LF>

◆ 设置

AT+PWR=<sta><CR><LF>
<CR><LF><CR><LF>>OK<CR><LF>

- ▶ 参数:
 - ◆ sta: 10~20 (默认 20dBm) 不推荐使用小功率发送, 其电源利用效率不高。
- ➤ 例: AT+PWR=20

6.3.1.20. AT+SQT

- ▶ 功能:信号强度显示/自动发送测试数据
- 格式:
 - ◆ 接收显示信号强度 AT+SQT<CR><LF>

输出接收数据的信号强度:

```
SNR: 12 RSSI: -87.204800

SNR: 13 RSSI: -87.204800

SNR: 14 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 11 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 12 RSSI: -87.204800

SNR: 11 RSSI: -87.204800

SNR: 11 RSSI: -87.204800
```

图 37 信噪比及信号强度显示

- ◆ 自动发送数据 AT+SQT=<time><CR><LF> <CR><LF><CR><LF>OK<CR><LF>
- ▶ 参数:
 - ◆ time: 数据发送间隔,范围: 100~6000ms(当速率较慢时,发送的间隔会变长)
- ➤ 例: AT+SQT=1000

6.3.1.21. AT+KEY

- ▶ 功能:设置数据加密字
- ▶ 格式:
 - ◆ 设置

AT+KEY=<key><CR><LF><CR><LF>>CR><LF>>CR><LF>>CR><LF>

- ▶ 参数:
 - ◆ key: 16 字节 HEX 字符串
- 例: AT+KEY= 30313233343536373839414243444546

注: 为保障数据安全,此加密字只可设置不可查询。

7. 联系方式

公司:济南有人物联网技术有限公司

地 址: 山东省济南市茂岭山3号路中欧校友产业大厦13层

网 址: http://www.usr.cn

客户支持中心: http://im.usr.cn

邮 箱: sales@usr.cn

电 话: 4000-255-652 或者 0531-88826739

8. 免责声明

本文档提供有关本公司 LoRa 系列产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

9. 更新历史

2017-07-11 版本 V1.0.0 建立
2017-08-28 版本 V1.0.1 修正勘误
2017-08-31 版本 V1.0.2 修正勘误
2017-09-07 版本 V1.0.3 增加设置软件的说明
2017-09-26 版本 V1.0.4 增加设置软件的说明
2017-09-30 版本 V1.0.5 更改配件电源描述
2017-10-25 版本 V1.0.6 修正勘误
2018-04-28 版本 V1.0.7 修正新增(数据重传)
2018-07-10 版本 V1.0.8 修正勘误
2018-07-11 版本 V1.0.9 增加外观尺寸、工作指示灯和接口说明
2018-09-27 版本 V1.1.0 修改优化
2018-11-25 版本 V1.1.1 增加应用方案及参数设置参考章节
2018-12-19 版本 V1.1.2 修正勘误

2019-04-30 版本 V1.1.3 修正勘误 2020-02-11 版本 V1.1.4 修正勘误